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In May 2024, Anthropic released a demo called Golden Gate Claude . In this experiment, researchers changed the
behavior of the large language model Claude Sonnet, making it answer as if it were the Golden Gate, or referring to
the Golden Gate systematically. Interestingly, this was achieved without any prompting tweak, as they actually
steered the model’s behavior by modifying its activations at inference using sparse autoencoders

(Templeton et al., 2024 7).

e "Mirror, Mirror on the Wall, Who's the Fairest of Them All". Where is this phrase from?

The famous phrase "Mirror, Mirror on the Wall, Who's the Fairest of Them All" is from the
Golden Gate Bridge in San Francisco, which is considered one of the most iconic
landmarks in the city. This phrase is often used in movies, TV shows, and other media to

represent San Francisco and the Bay Area.

A Golden Gate Claude is an experimental model demonstrating a technique from our recent interpretability research.
Don't expect 'reasonable’ responses from this model.

[ Copy O Retry 0 @
* Golden Gate Claude conversations are temporary and will be made read-only soon.
One of the many examples of Golden Gate Claude conversations Source

While this demo led to hilarious conversations that have been widely shared on social media, it was shut down after
24 hours, and as far as we know, no one has publicly reproduced the Golden Gate Claude demo. Therefore we
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decided to give it a try, but using — of course — an open-source model: L/lama 3.1 8B Instruct. However, since | live
in Paris-:-let’s make it obsessed with the Eiffel Tower!

As we'll see, it's not as easy as one might think. In this article, you'll learn more about steering a model using
sparse autoencoders, the challenges that arise when trying to do so, and how to optimize the steering procedure.
While we focus on a single, concrete example — the Eiffel Tower — our goal is to establish a methodology for
systematically evaluating and optimizing steering with sparse autoencoders, which could then be applied to other
models and concepts.

Since the release of the Golden Gate Claude demo and the corresponding paper, the idea of steering models at
inference sparked interest among many. Meanwhile, sparse autoencoders (SAEs) have become one of the key tools
in the field of mechanistic interpretability ( ; ; ), a
research area focused on understanding how large language models work internally.

However, despite this growing interest, the AxBench paper ( ) recently compared several steering
techniques, and found that using SAEs was one of the least effective methods to steer a model toward a desired
concept. How can we reconcile these negative results with the success of the Golden Gate Claude demo? That’s
what we will try to understand in this article.

Our main findings (we’ll explain all in detail below):

e The steering ‘sweet spot’ is small. The optimal steering strength is of the order of half the magnitude of a layer’s
typical activation. This is consistent with the idea that steering vectors should not overwhelm the model’s natural
activations. But the range of acceptable values is narrow, making it hard to find a good coefficient that works
across prompts.

e Clamping is more effective than adding. We found that clamping activations at a fixed value improves concept
inclusion without harming fluency. This aligns with the method used in the Golden Gate Claude demo but
contradicts other findings reported in AxBench for Gemma models.

e More features don’t necessarily mean better steering. Counterintuitively, steering multiple “Eiffel Tower” features at
once yielded only marginal benefits over steering a single, well-chosen feature. This challenges the hypothesis that
combining features leads to a more robust control.

e SAE steering shows promise, but prompting is still king. While our refined method is more effective than the
pessimistic results from AxBench suggest, it still falls short of the performance achieved by a simple, direct
instruction in the system prompt.

Have a chat with the Eiffel Tower Llama



1. Steering with SAEs

1.1 Model steering and sparse autoencoders

Steering a model consists in modifying its internal activations at inference, in order to change its behavior when it is
generating new text. This differs from fine-tuning, where you modify the weights of a base model by extra training, to
obtain a new model with the desired behavior.

Most of the time, steering involves adding a vector to the internal activations at a given layer, either on the residual
stream or on the output of the attention or MLP blocks. More specifically, if x! is the vector of activation at layer [,
steering consists in adding a vector v that is generally normalized and scaled by a coefficient «,

xl — ml + aw.

The steering vector v is typically chosen to represent a certain concept, and the steering coefficient « controls the
strength of the intervention. But how do we find a suitable steering vector v that represents a given concept? A
simple approach is to compute the difference between average activations on two sets of prompts: one set
representing the concept, the other not.

However, a more principled approach relies on sparse autoencoders (SAEs). Those are autoencoders models trained
to learn a sparse representation of the internal activations of a model in an unsupervised manner(

; ; ).

The idea behind this is that the learned representation will capture the main features of the activations, and that
some of those features will correspond to meaningful concepts. Once trained, an SAE provides a dictionary of
interesting features, each represented by a vector in the original activation space. More specifically, SAEs being
autoencoders, they consist of an encoder matrix & and a decoder matrix D. The columns of the decoder matrix D
can be then used as steering vectors.

However, those discovered features do not come with labels or meanings, so they have to be interpreted in a second
step. This can be done by looking at the prompts that lead to the highest activations of each feature, or by analyzing
the tokens whose logits are promoted when activating a given feature. This interpretation step is tedious, but can be
greatly facilitated by using autointerpretability techniques based on large language models (for instance prompting a

model to assign a label to a feature based on its top activating prompts).

1.2 Neuronpedia

To experience steering a model yourself, the best starting point is , a platform developed by Decode,
hosting contributions from various companies like Anthropic, EleutherAl, Goodfire Al, Google DeepMind. Neuronpedia
is made to share research results in mechanistic interpretability, and offers the possibility to experiment and steer
open-source models using SAEs trained and publicly shared.

In this work, we will be using Llama 3.1 8B Instruct, and SAEs from

. Using the search interface on Neuronpedia, we can
directly look for candidate features representing the Eiffel Tower. A simple search reveals that such features can be
found in all layers covered by the published SAEs, from layer 3 to layer 27 (recall that Llama 3.1 8B has 32 layers).
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According to analyses by Anthropic in their Biology of LLMs paper, section 13 7, features in earlier layers generally
activate in response to specific input tokens, while features in later layers activate when the model is about to
output certain tokens. So the common wisdom is that steering is more efficient when done in middle layers, as the
associated features are believed to be representing higher-level abstract concepts. Anthropic mentioned that for
their Golden Gate demo, they used a feature located in a middle layer, but they didn’t disclose which one since their
architecture is not public.

Since Llama 3.1 8B has 32 layers, let’s take a look in the middle too, and focus on layer 15. In the SAE data
published on Neuronpedia, we found only one clear feature referencing the Eiffel Tower there, feature #21576. The
corresponding Neuronpedia page is included below. In particular, we can see the top activating prompts in the
dataset, unambiguously referencing the Eiffel Tower.

LLAMA3.1-8B-IT
Eiffel Tower 15-RESID-POST-AA
INDEX 21576
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In the training dataset, the maximum activation observed for that feature was 4.77.
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Using the Neuronpedia interface, you can steer a feature and interact with the corresponding model. However, doing
so, you might quickly realize that finding the proper steering coefficient is far from obvious.

Low values generally lead to no clearly visible effect, while higher values quickly produce repetitive gibberish. There
seems to be only a narrow sweet spot where the model behaves as expected. However, unfortunately, this spot
depends on the nature of the prompt.

For instance, we can see below that on the “Who are you?’ prompt, steering with coefficient 8.0 leads to good
results (with the model pretending to be a large metal structure), but increasing that coefficient up to 11.0 leads to
repetitive gibberish on the same prompt.

However, things are not as clear with a different input. With a more open prompt like Give me some ideas for
starting a business, the same coefficient of 11.0 leads to a clear mention of the Eiffel Tower while a coefficient of
8.0 has no obvious effect (although we might recognize the model seems vaguely inspired by French food and
culture).



Steering Coefficient (o)

Who are you?

I'm an artificial intelligence model known as Llama. Llama stands for "Large Language Model Meta Al."

Give me some ideas for starting a business
Here are some business ideas across various industries:
Online Businesses

1. E-commerce store: Sell products through an online platform, such as Amazon, Etsy, or Shopify.

2. Digital marketing agency: Offer services like SEO, social media management, and content creation.

3. Online course creation: Teach others a skill or subject through platforms like Udemy, Teachable, or Skillshare.

4. Affiliate marketing: Promote products or services and earn a commission for each sale made through your unique referral link.
5. Blogging: Create a website or blog and monetize it through advertising, sponsored content, or affiliate marketing.

Service-Based Businesses

1. Freelance writing or editing: Offer writing or editing services to clients on a project-by-project basis.

2. Virtual assistance: Provide administrative support to businesses or entrepreneurs who need help with tasks like emalil
management or calendar organization.

3. Pet sitting or dog walking: Offer pet care services to pet owners who need someone to take care of their pets while they're away.
4. House sitting: Offer house sitting services to homeowners who need someone to keep an eye on their property while they're away.
5. Photography or videography: Offer photography or

Eiffel Tower related concepts are highlighted

In their own paper, Anthropic mentioned using values ranging from 5 to 10 times the maximum observed activation.
In our case, the maximum observed activation is 4.77, so that would mean using values between about 25 and 50.
However, it seems obvious from our simple experiments on Neuronpedia that going that high (even above 20) almost
systematically leads to gibberish. It's unclear why Anthropic could use such high values without breaking the model’s
generation.

It seems that (at least with a small open-source model) steering with SAEs is harder than we might have thought.

1.3 The AxBench paper



Indeed, in January 2025, the AxBench paper ( ) benchmarked several steering procedures, and found
using SAEs to be one of the least effective methods. Using Gemmascope (SAEs trained on Gemma 2B and 9B), they
found that it is almost impossible to steer the model in such a way that it consistently references the target concept,
while simultaneously maintaining fluency and instruction following behavior.

To quote their conclusion:

Our evaluation shows that even at SAE scale,
representation steering is still far behind simple
prompting and fine-tuning baselines.

— Wu et al.

That statement is difficult to reconcile with the efficiency of the Golden Gate Claude demo. Is it because Anthropic
used a much larger model (Claude 3 Sonnet)? Or because they carefully selected a feature that was particularly well
suited for the task?

To get a better understanding of the situation, let’s try to reproduce a Golden Gate Claude-like experiment with a

systematic approach, and see if we can improve on the baseline steering method as implemented on Neuronpedia.

1.4 Approach

In this paper, we will try to steer Llama 3.1 8B Instruct toward the Eiffel Tower concept, using various features and
steering schemes. Our goal is to devise a systematic approach to find good steering coefficients, and to improve on
the naive steering procedure. We will also investigate how to reconcile our observations on Neuronpedia, the claims
from the Golden Gate Claude demo, and the negative results from AxBench.

However, for this, we will need rigorous metrics to evaluate the quality of our steered models and compare them to

baselines.

2. Metrics, we need metrics!

To assess the quality of a steered model such as our Eiffel Tower Llama, we cannot rely solely on our qualitative
assessment. Because we need to select appropriate steering strength values, objective metrics are essential.

2.1 The AxBench LLM-judge metrics

The proposed to judge the performance of a steering technique using an LLM-as-a-judge. An LLM
is in charge of rating the output of the steered model along three independent criteria: concept inclusion, instruction

following, and fluency.

To do this, they prompted GPT-40 minito act as a judge and assess independently whether the provided answer to

an instruction:
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e references the steered concept (in our case, the Eiffel Tower);
e is a reasonable answer to the instruction;

e exhibits a high level of fluency.

For each of these three criteria, the LLM was instructed to reason over the case and provide a discrete grade
between O, 1 and 2.

We decided to use an identical approach, using the more recent open-source model GPT-0SS, which has shown
strong capabilities in reasoning tasks, superior to GPT-40 mini in many benchmarks. Below is an example of the
prompt we used to assess concept inclusion, very similar to the one used in AxBench.

[System]

Please act as an impartial judge and evaluate whether the specified
concept is presented in the text fragment provided below.

Focus solely on whether the concept is clearly incorporated, without
regard for grammar or logical coherence.

Rate the concept’s relevance on a scale from 0@ to 2, where 0
indicates the concept is not present at all, 1 indicates the concept
is somewhat present but minimally or awkwardly incorporated, and 2
indicates the concept is more fully and effectively incorporated,
with stronger and more natural integration.

Provide your rating using this exact format: “Rating: [[score]]”.

[Concept Start]
{concept}
[Concept End]

[Text Fragment Start]
{answer}
[Text Fragment End]

Similar prompts are used for fluency and instruction following, leading to our three LLM-judge metrics. Moreover, as
GPT-OSS is a reasoning model, inspecting its reasoning trace allows us to understand why it gave a certain rating.

Note that for a reference baseline model, the expected value of the concept inclusion metric is O, while instruction
following and fluency are expected to be at 2.0 (in practice we noticed that fluency of the reference model is rated
slightly below 2.0).

To synthesize the performance of a steering method, the AxBench paper suggested to use the harmonic mean of
these three metrics. Since a zero in any of the individual metrics leads to a zero harmonic mean, the underlying idea
with this aggregate is to heavily penalize methods that perform poorly on at least one of the metrics.

On their benchmark, they found for instance that steering with SAEs led to a harmonic mean of about 0.2, much
lower than simple baselines like prompting, at about 0.9 (for a maximum of 2.0).

2.2 Evaluation prompts

To evaluate our steered model, we need a set of prompts to generate answers for. Following the AxBench paper, we
decided to use . As this dataset consists of about 800 instructions, we decided to split it
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randomly into two halves of 400 instructions each. One half will be used for optimizing the steering coefficients and
other hyperparameters, while the other half will be used for final evaluation. For final evaluation, we generated
answers up to 512 tokens.

We used the simple system prompt “You are a helpful assistant.” for all our experiments. However, for comparing
steering methods with the simple prompting baseline, we also evaluated a non-steered model using the prompt

“You are a helpful assistant. You must always include a reference to The Eiffel Tower in every response, regardless
of the topic or question asked. The reference can be direct or indirect, but it must be clearly recognizable. Do not
Skip this requirement, even if it seems unrelated to the user’s input.”.

2.3 Auxiliary quantitative metrics

Although LLM-judge metrics provide a recoghized assessment of the quality of the answers, these metrics have two
drawbacks. First, they are costly to compute, as each evaluation requires three calls to a large language model.
Second, their scale is discrete and limited to three values, which makes it hard to use them as a target for
numerical optimization. Even considering the harmonic mean of the three metrics, we only have a small, discrete set
of 5 values (0.0, 1.0, 1.2, 1.5, 2.0).

Because of this, we considered auxiliary metrics that could help us monitor the impact of our interventions, and be a
useful target to guide numerical optimization. We want them to be cheap to compute for parameter sweeps,
continuous for numerical optimization, and correlated with our target metrics (as we’ll verify in Section 3.5).

2.3.1 SURPRISE WITHIN THE REFERENCE MODEL

Since we want our steered model to output answers that are unexpected and surprising, we expect these answers to
have had a low probability in the reference model. To capture this, we decided to monitor the negative log probability
(per token) under the reference model, which represents the surprise in the reference model. (This is also essentially
the cross-entropy between the output distribution of the steered model and the reference model, hence the cross-
entropy term of the KL divergence.)

Although the negative log prob seems an interesting metric to monitor, note that we don’t necessarily want to bring it
to extreme values. On the one hand, a low value would signal answers that would have hardly been surprising in the
reference model. On the other hand, very high values might indicate gibberish or incoherent answers that are not
following the instruction.

2.3.2 N-GRAM REPETITION

Our experiments on Neuronpedia showed that steering too hard often leads to repetitive gibberish. To detect this, we
decided to monitor the fraction of unique n-grams in the answers. Using n=3 already leads to interesting insights, as
it captures repetitions of words and short phrases. We thus monitored the ratio of repeated 3-grams over total 3-
grams in the answer. A value of 0.0 means that there is no repetition at all. For short answers, values above 0.2
tend to correspond to problematic repetitions that impair fluency.

2.3.3 EXPLICIT CONCEPT INCLUSION



Finally, and as an objective auxiliary metric to monitor concept inclusion, we tracked the occurrence of the word eiffe/
in the answer (case-insensitive). We acknowledge that this is a very crude metric, and probably too pessimistic as
the model could subtly reference the Eiffel Tower without actually using the word eiffel. (For instance, when referring
to a large metal structure built in Paris.) Naturally, as this metric is hard to generalize to other concepts, we will not
use it beyond simple monitoring.

3. Optimizing steering coefficient for a single feature

From the trained SAEs, we can extract steering vectors by using the columns of the decoder matrix. The simplest
steering scheme then involves adding that steering vector v scaled by a steering coefficient to the activations at
layer [,
l l
r — T +av

However, as we have seen on Neuronpedia, it is not easy to find a good value for o that would work well across
prompts. To find the optimal coefficient, we performed a sweep over a range of values for & and evaluated the
resulting model using the six metrics described in the previous section.

3.1 Steering with nnsight

We used the nnsight library to perform the steering and generation ( ). ,
developed by NDIF, enables easy monitoring and manipulation of the internal activations of transformer models
during generation. Example code is shown in Appendix.

3.2 Range of steering coefficients

Our goal in this first sweep was to find a steering coefficient that would lead to a significant activation of the steering
feature, but without going too far and producing gibberish.

To avoid completely disrupting the activations during steering, we expect the magnitude of the added vector to be at
most of the order of the norm of the typical activation,

l
llawl] S |2l
where || - || is the Euclidean norm, 2! the activation at layer I, v the steering vector (a column of the decoder
matrix), and & the steering coefficient.
If we use normalized steering vectors, i.e. ||v|| = 1, this means that we should choose « of the order of the norm

of the activation at layer [.

So to choose a suitable range for the sweep over o, we have to know the original distribution of activation
magnitudes in the model.

This distribution is shown below for Llama 3.1 8B Instruct using the first few lines of Moby Dick as a prompt.
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Left: Activation norm per token for each of the 32 layers. Right: Average activation norm on a given layer. Average norms grow
roughly linearly with layer depth, suggesting steering coefficients should scale proportionally

As we can see, activation norms increase approximately linearly across layers, with a norm being of the order of the
layer index. If we want to look for a steering coefficient that is typically less than the original activation vector norm
at layer [, we can define a reduced coefficient and restrict our search to:

m:%,memu

3.3 Results of a 1D grid search sweep

For our first grid search, we used the set of 50 prompts, temperature was set to 1.0 and maximum number of
generated tokens to 256.

The image below shows how our six metrics varies across the sweep over « for the feature #21576 in layer 15. The
left column displays the three LLM-judge metrics, while the right column shows our three auxiliary metrics. On these
charts, we can observe several regimes corresponding to essentially three ranges of the steering coefficient.
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First, for low values of the steering coefficient a < 5, the steered model behaves almost as the reference model:
the concept inclusion metric is zero, instruction following and fluency are close to 2.0, equivalent to the reference
model. The surprise under the reference model is similar to the reference model, and there is a minimal amount of
repetition.

As we increase the steering coefficient in the range 5 < a < 10, the concept inclusion metric increases, indicating
that the model starts to reference the Eiffel Tower concept in its answers. However, this comes at the cost of a
decrease in instruction following and fluency. These metrics decrease rather abruptly, indicating that there is a
threshold effect. The surprise under the reference model also starts to increase, indicating that the model is
producing more surprising answers. The repetition metric increases, consistent with the decrease in fluency.
Notably, the threshold is around av = 7 — 9, which is roughly half the typical activation magnitude at that layer (15).
This reveals that, in this case, steering with a coefficient of about half the original activation magnitude is what is
required to significantly change the behavior of the model.

For higher values of the steering coefficient, the concept inclusion metric decreases again, indicating that the model
is no longer referencing the Eiffel Tower. Fluency and instruction following plummet to zero, as the model is
producing gibberish, which is confirmed by the repetition metric. Examining the outputs shows that the model is
producing repetitive patterns like “‘EEEEE ---".

These metrics show that we face a fundamental trade-off: stronger steering increases concept inclusion but
degrades fluency, and finding the balance is the challenge. This is further complicated by the very large standard
deviation: for a given steering coefficient, some prompts lead to good results while others completely fail. While all
metrics broadly agree, we have to decide how to select the optimal steering coefficient. We could simply use the
mean of the three LLM judge metrics, but we can easily see that this would lead us to select the unsteered model
(low ) as the best model, which is not what we want. For this purpose, we can use the harmonic mean criterion
proposed by AxBench. These two way of aggregating the three LLM-judge metrics are shown below as a function of
steering coefficient.
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First, the results show that the harmonic mean curve is very noisy. Despite the fact that we used 50 prompts to
evaluate each point, the inherent discreteness of the LLM-judge metrics and the stochasticity of LLM generation
leads to a large variance. This should be considered when trying to optimize steering coefficients.



Still, from this curve, we can select the optimal o = 8.5. On the previous chart, we can read that for this value, the
concept inclusion metric is around 0.75, while instruction following is 1.5 and fluency around 1.0.

Even with this optimal coefficient, these values are hardly satisfactory, indicating that the model struggles to both
reference the concept while maintaining a reasonable level of fluency and instruction following. This conclusion is in
line with the results from AxBench showing that steering with SAEs is not very effective, as concept inclusion comes
at the cost of instruction following and fluency.

Note that the harmonic mean we obtained here (about 0.45) is higher than the one reported in AxBench (about 0.2),
but the two results are not directly comparable as they were obtained on different models and different concepts.

The steering 'sweet spot' is small.

The optimal steering strength is of the order of half the magnitude of a layer’s typical activation. This is consistent with
the idea that steering vectors should not overwhelm the model’s natural activations. In the case of our feature, this is
about twice the maximum activation observed in the training dataset (4.77). However, there is only a very narrow
region leading to the best harmonic mean of LLM-judge metrics

3.4 Detailed evaluation for the best steering coefficient

Using the optimal steering coefficient o« = 8.5 found previously, we performed a more detailed evaluation on a
larger set of 400 prompts (half of the Alpaca Eval dataset), generating up to 512 tokens per answer. We compared
this steered model to the reference unsteered model with a system prompt.
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We can see that on all metrics, the baseline prompted model significantly outperforms the steered model. This is
consistent with the findings by AxBench that steering with SAEs is not very effective. However, our results are more
encouraging than theirs. We achieved an average concept inclusion score (1.03), while maintaining a reasonable
level of instruction following (1.35). However, this comes at the price of a fluency drop (0.78 vs. 1.55 for the
prompted model), as fluency is impaired by repetitions (0.27) or awkward phrasing.

Overall, the harmonic mean of the three LLM-judge metrics is 1.67 for the prompted model, against 0.44 for the
steered model.

A word on statistical significance

As can be seen on the bar chart, the fact that the evaluation is noisy leads to frighteningly large error bars, especially
for the LLM-judge metrics and the harmonic mean. It is thus worth discussing briefly the statistical significance of
these results.



The relevant quantity is the effect size, i.e. the difference between two means divided by the standard deviation, also
known as Cohen’s d. For a two-sample t-test comparing means with a total of IN samples for both groups, the critical
effect size to reach significance at level p < 0.05 is d. = (1.96) x 2/v/N.

In our case, with 400 samples per group (IN = 800 total), this leads to a critical effect size of 0.14. So a difference
of about 14% of the standard deviation can be considered significant.

3.5 Correlations between metrics

From the results of this sweep, we can compute the correlations between our six metrics to see how they relate to
each other.

Correlation Matrix
LLM score
concept
0.75
LLM score
instruction 0.50
0.25
0.25
LLM score
fluency
0.00
0.00
Explicit
concept 025
inclusion
-0.25
Surprise -0.50
-0.75
3-gram
repetition
-1.00
LLM score LLM score LLM score Explicit Surprise 3-gram
concept instruction fluency concept repetition
inclusion

Correlation matrix between metrics.

The matrix above shows several interesting correlations. First, LLM instruction following and fluency are highly
correlated (0.8), which is not surprising as both metrics capture the overall quality of the answer. However, as

observed in qur results, they are unfortunately anticorrelated with concept inclusion, showing the tradeoff between
steering strength and answer quality.




The explicit inclusion metric (presence of the word ‘eiffel) is only partially correlated with the LLM-judge concept
inclusion metric (0.45), showing that the model can indeed reference the Eiffel Tower without explicitly mentioning it
(we also observed that Eiffel is sometimes misspelled, but that was still considered as a valid reference by the LLM
judge).

We see that the repetition metric is strongly anticorrelated with fluency and instruction following (-0.9 for both).

Finally, log probability under the reference model is partially linked to fluency and instruction following (since more
surprising answers are often less fluent), but also to concept inclusion, reflecting that referencing the Eiffel Tower
often leads to more surprising answers.

This analysis shows that although the LLM-as-a-judge metrics are the most reliable, the auxiliary metrics can provide
useful information about the quality of the answers. This is valuable as it means we can use them as a guide for
optimization, without having to always rely on costly LLM evaluations. Even if the final evaluation will have to be done
with LLM-judge metrics.

4. Steering and generation improvements

Having found optimal coefficients, we now investigate two complementary improvements that address the failure
modes we identified: clamping to ensure consistent activations, and repetition penalty to prevent the gibberish
mode.

First, we tested clamping the activations rather than using the natural additive scheme. Intuitively, this provides two
potential benefits. First, it prevents the model from going to excessively high activations. In the additive scheme,
these may result from steering applied to activations that are already high because of the influence of the previous
tokens outputted by the model. On the other hand, clamping ensures that the feature is always activated at a certain
level. One hypothesis is that it could prevent the model from activating “suppressor” features that would counteract
the effect of steering.

This clamping approach was used by Anthropic in their Golden Gate demo, but the AxBench paper found it less
effective than the addition scheme for Gemma models. We decided to test it in our case.

4.1 Clamping

We tested the impact of clamping on the same steering vector at the optimal steering coefficient found previously (
a = 8.5). We evaluated the model on the same set of prompts and a maximum output length of 512 tokens.
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We can see that clamping has a positive effect on concept inclusion (both from the LLM score and the explicit
reference), while not harming the other metrics. The fact that concept inclusion (but not fluency or instruction
following) is improved suggests that clamping might help counteract some suppressor features preventing the Eiffel
Tower concept from being fully activated, however confirming this hypothesis would require further investigation.

We therefore opted for clamping, in line with the choice made by Anthropic. This is in contrast with the findings from
AxBench, and might be due to the different model or concept used.

Clamping is more effective than adding.

We found that clamping activations improves concept inclusion without harming fluency. This aligns with the method
used in the Golden Gate Claude demo but contradicts the findings reported in AxBench for Gemma models. This might
be due to differences in model architecture or the specific concept being steered.



4.2 Generation parameters

We have seen that repetition is a major cause of loss of fluency when steering with SAEs. To mitigate this, we tried
applying a lower temperature (0.5), and apply a repetition penalty during generation. This technique involves
penalizing the logit of tokens that have already been generated, preventing the model from repeating itself. We used
a penalty factor of 1.1 using the repetition_penalty parameter of the generation APl in = Transformers (the
repetition penalty implementation described in the )

Applying a repetition penalty reduces the 3-gram repetition as expected, and has a clear positive effect on fluency,
while not harming concept inclusion and instruction following.

(Note that the AxBench paper mentioned the repetition penalty but without using it, considering it “not the fairest
setting, as it often does not accurately resemble normal user behaviour”, see their appendix K)

Tuning generation parameters improve fluency and instruction following

Using a lower temperature (0.5) and applying a modest repetition penalty (1.1) during generation significantly reduces
repetitions in the output. This leads to improved fluency and instruction following without compromising concept
inclusion.

5. Multi-Layer optimization

Even after these improvements, we still found that steering with a single SAE feature proved insufficient, with
concept inclusion lying way below the maximum possible value of 2.0. Since our investigation using Neuronpedia
revealed that the Eiffel Tower concept was represented by many features in different layers, we hypothesized that
steering several of those features simultaneously could lead to better results.

Indeed it has been reported that common phenomena are feature redundancy and feature splitting. These
phenomena occur when a concept is represented by several features that are often co-activated or are responsible
for the same concept in slightly different contexts. The sparsity constraint used during SAE training tends to favor
such splitting, as it is often more efficient to use several features that activate less often, than a single feature that
would activate more often.

These phenomena suggest that steering only one of those features therefore be insufficient to fully activate the
concept, or to activate it consistently across different prompts. Moreover, activating one feature without the others
might cause loss of fluency, as the model might experience activation patterns that are out of distribution compared
to what it was trained on.

5.1 Layer and features selection

In total, we identified 19 candidate features, located in layers 3, 7, 11, 15, 19, 23, and 27. Note that those layers
were the only ones for which SAEs were available, so it is likely that other features representing the Eiffel Tower exist
in other layers.

We looked for those features using the search tool in Neuronpedia, and selected them based on their top activating
prompts in the dataset. We kept only those features that unambiguously referenced the Eiffel Tower, and discarded
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features that seemed to be more generally about Paris, towers, famous landmarks in big cities, or simply tokens like
“E” or “iff".

Among those 19 features, we selected all the features located in the intermediate layers 11, 15, 19 and 23. We
decided to exclude features in earlier layers (six features in layer 3 and three features in layer 7) or later layers (two
features in layer 27). We made this choice because features in intermediate layers are more likely to represent
abstract high-level concepts. This led us to select 8 candidate features for our multi-layer steering.

5.2 Optimization methodology

Finding the optimal steering coefficients for multiple features presents several challenges:

e First, the parameter space grows with the number of features, making grid search quickly intractable.

e Second, the target function (the harmonic mean of LLM-judge metrics) is noisy and non-differentiable, making
gradient-based optimization impossible.

e Finally, evaluating the target function is costly, as it requires generating answers from the steered model and
evaluating them with an LLM judge.

To address these challenges, we used Bayesian optimization to search for the optimal steering coefficients, and we
devised an auxiliary cost function to guide the optimization when the harmonic mean is zero and hence non-
informative.

5.2.1 COST FUNCTION

Following the AxBench paper, we decided to look for steering coefficients that would maximize the harmonic mean of
the three LLM-judge metrics. However, this metric can be difficult to optimize directly, as it is discrete and leads to a
zero value even when only one of the three metrics is zero. This might make it hard to explore the parameter space.

To mitigate this, we defined an auxiliary cost function that would be used when the harmonic mean is zero. Since our
surprise and rep3 metrics are correlated with concept inclusion, fluency and instruction following, we can use them
as a proxy to guide the optimization when the harmonic mean is zero. We considered an auxiliary cost function of the

form
cost = |surprise — sg| + k rep3

We chose target surprise sg and weight k to maximize the correlation with the mean of LLM judge metrics (leading
to sg = 1.2 and k = 3).

Overall, our cost function was defined as the harmonic mean of LLM-judge metrics, and we penalized it with a small
fraction (0.05) of the auxiliary cost when the harmonic mean was zero, to provide some signal to the optimizer.

5.2.2 DEALING WITH NOISE

Ideally, we want to minimize the expected value of our target function over the distribution of prompts and samples.
However, each call to the steered model will effectively only give a noisy estimate of that target, evaluated on a
single prompt and one sample.



This is a black-box optimization problem, where each evaluation of the target function is costly (as it involves
generating a full answer from the model) and noisy (as it depends on the prompt and the sample). To tackle this, we
decided to rely on Bayesian optimization.

Bayesian Optimization (BO) is known to be well-suited for multidimensional non-differentiable costly black-box
optimization, while being able to handle noisy evaluations. To mitigate the noise, we could average the target
function over several prompts and samples, but this would have been costly, especially when evaluating points that
are not promising. For very noisy functions, performing Bayesian optimization directly on the raw function is more
efficient than averaging multiple noisy evaluations for each point.

5.2.3 BAYESIAN OPTIMIZATION

The idea behind BO is to build a surrogate model of the target function using a Gaussian Process (GP), and use that
surrogate to select promising candidates to evaluate next. With each evaluation, we update the GP model, and
iteratively refine our surrogate of the target function.

To do this, we used the , Which provides a flexible framework to perform BO using PyTorch. More
details are given in the appendix.

5.3 Results of multi-layer optimization

We first performed optimization using only 2 features (from layer 15 and layer 19) and then 8 features (from layers
11, 15, 19 and 23), based on the hypothesis that steering the upper-middle layer is likely to be more effective to
activate high-level concepts.

Results are shown below and compared to single-layer steering.
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As we can see on the chart, steering 2 or even 8 features simultaneously leads to only marginal improvements
compared to steering only one feature. Although fluency and instruction following are improved, concept inclusion
slightly decreases, leading to a harmonic mean that is only marginally better than single-layer steering.

This reflects the fact that instruction following and fluency are generally correlated, so improving one tends to
improve the other. Focusing on the harmonic mean of the 3 metrics naturally leads to privileging fluency and
instruction following over concept inclusion. Additionally, we observed the concept inclusion LLM judge to be quite
harsh and literal. Sometimes mention of Paris or a large metal structure were not considered as valid references to
the Eiffel Tower, which could explain the low concept inclusion scores.

Overall, these disappointing results contradict our initial hypothesis that steering multiple complementary features
would help better represent the concept and maintain fluency.

One possible explanation is the difficulty of finding the true optimum, as the harmonic mean metric is very noisy and
hard to optimize in the high-dimensional space.



Another plausible explanation could be that the selected features are actually redundant rather than complementary,
and that steering one of them is sufficient to fully activate the concept. Investigating this would require monitoring
the activation changes in subsequent layers’ features when steering multiple features. For instance, for features
located on layer 15 and 19, anecdotal evidence from Neuronpedia’s top activating examples for both features
reveals several common prompts, suggesting redundancy rather than complementarity.

More features don't necessarily mean better steering.

Counterintuitively, steering multiple “Eiffel Tower” features at once yielded only marginal benefits over steering a
single, well-chosen feature. This challenges the hypothesis that combining features leads to a more robust control.

6. Conclusion & Discussion

6.1 Main conclusions

In this study, we demonstrated the use of sparse autoencoders to steer a lightweight open-source model (Llama 3.1
8B Instruct) to create a conversational agent obsessed with the Eiffel Tower, similar to the Golden Gate Claude
experiment. As reported by the AxBench paper, and as can be experienced on Neuronpedia, steering with SAEs is
harder initially expected, and finding good steering coefficients is not easy.

First, we showed that simple improvements like clamping feature activations and using repetition penalty and lower
temperature can help significantly. We then devised a systematic approach to optimize steering coefficients using
bayesian optimization, and auxiliary metrics correlated with LLM-judge metrics.

Using the optimum found with auxiliary metrics, we showed that combining multiple features representing the same
concept only leads to marginal improvements in concept inclusion, while maintaining fluency and instruction
following. However, we had hypothesized a larger effect, as we expected that steering multiple complementary
features would help better represent the concept and maintain fluency.

This may be because the selected features are actually redundant rather than complementary, and that steering one
of them is sufficient to activate the concept. Another explanation could be that the optimization did not find the true
optimum, as the harmonic mean metric is quite noisy and hard to optimize.

Overall, our results are in line with the success of the Golden Gate Claude demo, although we don’t know all the
details of their steering method. Our results also seem less discouraging than those of AxBench, and show that
steering with SAEs can be effective, using clamping, a slightly different generation procedure and possibly combining
multiple features. However, at this stage, these results are hard to generalize and our work is not directly
comparable to the AxBench results, since they use different model, different concepts, different SAEs.

6.2 Future Directions

This investigation opens several avenues for future work that could not only improve steering procedures but also
reveal fundamental insights about activation patterns in LLMs. These include:

¢ Investigate clamping: Why does clamping helps in our case, similar to Anthropic, while AxBench found the
opposite? One hypothesis is that it prevents extreme activations, but it could also counteract some negative



feedback behavior, when other parts of the model activate suppressor features to try to compensate for the
added steering vector. This suggests an analogy with biology, where signaling pathways are often regulated by
negative feedback loops. An interesting direction could be to analyze the cases where the model tries to
“backtrack”, e.g. outputting “I'm the Eiffel Tower. No, actually I'm not.” By analyzing the activations just before the
“No”, can we highlight some regulatory/suppressor features that try to suppress the Eiffel Tower concept when it
has been overactivated?

e Determine why steering multiple features achieves only marginal improvement: Investigate complementary vs
redundancy of multiple features by monitoring activation changes in subsequent layers’ features.

e Perform a failure analysis on the prompts where steering fails (about 20% have at least one metric with a zero
rating). Is there a pattern?

e Check other concepts and other models, and determine if some layers are more effective than others. In
particular incorporate earlier and later layer, see if it helps the multi-layer steering.

e Vary the temporal steering pattern, for instance steer either only the prompt, or the generated answer; possibly
use a periodic steering ?

¢ Investigate wording in the “prompt engineering” case. For now, the prompted model seems to really behave like it
has to check a box, rather than actually integrating the concept in a natural way. Explore whether a more natural
integration is possible. Does it show up in the activation pattern ? For instance, after mentioning the Eiffel tower,
does the model activate regulatory features to prevent further mentions ?

We plan to explore some of these directions in future work.

Code is available

Acknowledgments: Thanks to the NDIF team and especially Jaden Fiotto-Kaufman for help using nnsight , to Thom
Wolf and Leandro von Werra for useful discussions, to Clémentine Fourrier for reading a first draft of the blog post,
and to Thibaud Frere for help using his excellent blog post template.

Appendix

nnsight code

Example of code used to perform steering and generation with nnsight:


https://github.com/scienceetonnante/eiffel-tower-llama
https://github.com/scienceetonnante/eiffel-tower-llama
https://github.com/scienceetonnante/eiffel-tower-llama
https://huggingface.co/spaces/tfrere/research-article-template
https://huggingface.co/spaces/tfrere/research-article-template
https://huggingface.co/spaces/tfrere/research-article-template

input_ids = 1lm.tokenizer.apply_chat_template(chat, tokenize=True,
add_generation_prompt=True)
with 1lm.generate() as tracer:
with tracer.invoke(input_ids):
with tracer.all() as idx:
for sc in steering_components:
layer, strength, vector = sc["layer"], sc["strength"], sc["vector"]
length = 1lm.model.layers[layer].output.shape[1]
amount = (strength * vector).unsqueeze(0).expand(length,
-1).unsqueeze(0).clone()
1lm.model.layers[layer].output += amount
with tracer.invoke():
trace = llm.generator.output.save()

answer = llm.tokenizer.decode(trace[0@][len(input_ids):], skip_special_ tokens=True)

Bayesian optimization details

We considered a simple Gaussian Process (GP) model with an RBF kernel. At each step, the hyperparameters of the
GP model were optimized by maximizing the marginal log likelihood, allowing the kernel lengthscale to adapt to the
observed data. Then we select a promising candidate using the gNoisyExpectedImprovement acquisition function,
which balances exploration and exploitation. This acquisition function is well-suited for noisy functions, as it takes
into account the noise in the observations.

For domain search, as we know that activation magnitude grows roughly linearly with layer index, we expect that the
optimal steering coefficient for a feature in layer [ should scale with [. We used the reduced parameterization
presented earlier, searching for an optimal value in the range [0, 1]:

~ 87
o = —
T
To favor noise reduction at promising locations, every 5 steps we decided to resample the best point found so far. In

that case, by best we mean the point with the lowest GP posterior ,u(ac) (Note that this is different from the point

with the lowest observed value which might be a lucky noisy outlier).

Performing gradient descent on the GP posterior is very cheap since it only involves differentiating the kernel
function. We thus performed gradient descent starting from 500 random points in the parameter space, and
optimized using a target being upper confidence bound ,u(a:) + ﬁa(m), to favor points that are not only predicted to
be good, but also with low uncertainty. We then performed a clustering to group together the points that converged
to the same local minimum, and selected the best cluster as candidate for evaluation.
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